A Concurrency System for Ipr1s & ERLANG

Archibald Samuel Elliott

10 April 2015

University of

St Andrews






Abstract

Concurrent programming is notoriously difficult, due to needing
to reason not only about the sequential progress of any algorithms,
but also about how information moves between concurrent agents.

What if programmers were able to reason about their concur-
rent programs and statically verify both sequential and concurrent
guarantees about those programs’ behaviour? That would likely
reduce the number of bugs and defects in concurrent systems.

I propose a system combining dependent types, in the form
of the IDRIS programming language, and the Actor model, in the
form of ERLANG and its runtime system, to create a system which
allows me to do exactly this. By expressing these concurrent pro-
grams and properties in IDR1S, and by being able to compile IDRr1s
programs to ERLANG, I can produce statically verified concurrent
programs.

Given that these programs are generated for the ERLANG runtime
system, I also produce verified, flexible Ipr1s APIs for ERanG/OTP
behaviours.

What’s more, with this description of the Ipr1s code generation
interface, it is now much easier to write code generators for the
Ipr1s compiler, which will bring dependently-typed programs to
even more platforms and situations. I, for one, welcome our new
dependently-typed supervisors.
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CHAPTER 1

Introduction

A programmer had a problem, so they de-
cided to use threads.

Now two have they problems.

1.1 CoNCURRENT CONFUSION

Concurrent Programming is hard.

Whereas sequential programming only requires the programmer to reason
about time — i.e. how their program progresses — concurrent programming
requires the programmer to reason not only about time, but also about space
— i.e. how data moves between concurrent agents in their program — and
about causality — i.e. how the computational- and data-dependencies of their
program manifest themselves.

While it may seem that concurrency is a straightforward concept, the
implications of concurrency models are not generally well understood by
developers, which leads to bugs in programs. For example, in a shared
memory concurrency model (such as POSIX Threads) programmers frequently
misunderstand the atomicity of memory operations, which leads to difficult-
to-debug race conditions.

The C code in Listing 1.1 contains one such race condition. When run-
ning this code, it’s almost equally likely that it will print a value of less
than 100 as it will print a value of 100, and this value is computed entirely
nondeterministically.

The problem lies in the fact that += (line 15) isn’t an atomic operation,
and instead is split into an access and a separate update. These accesses and
updates in each thread can be interleaved in any way the computer wants.
These interleavings include doing multiple accesses before multiple updates,
which has the effect of losing updates. Race conditions can be a lot harder to
debug than this.

One way of avoiding this kind of bug is to use a totally different concur-
rency model. The Actor model [10] is one such model. Instead of communic-
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1 |#include <stdio.h>
#include <assert.h>

#include <unistd.h>
#include <pthread.h>

#define N_THREADS 100
static int x = 0;

11 | void *increment (void* argument) {
sleep(1);

int* value = (int*) argument;
*value += 1;

return NULL;

int main(void) {
21 pthread_t threads [N_THREADS];
void* res [N_THREADS];

for (int i = 0; i < N_THREADS; i++)
pthread_create (&threads[i], NULL, increment, (voidx*) &x);
26
for (int j = 0; j < N_THREADS; j++)
pthread_join(threads[j], &res[jl);

printf ("Xu=u%d\n", x);
31 assert(x == N_THREADS); /# Nondeterministically Fails */

Listing 1.1: A Race Condition in C

ating via sharing state, actors are processes that share state by communicating.
This makes it impossible to access or modify the state of another process
without coordinating with it first.

1.1.1 Erlang

One of the most respected implementations of the Actor model is ERLANG,
a programming language designed in the CS Lab at Ericsson. ERLANG’s
designers originally settled on the actor model for the increased fault tolerance
and isolation it provided, something they required for their software that runs
telephone call switches.

These same properties have in fact proved amazingly useful and versatile
for other applications. ERLANG is now used in a wide variety of software
such as Basho’s Riak Database; ejabberd, an XMPP chat server; and the LINC
OpenFlow switch, a software defined networking system.

Of course, it is still possible to write programs with race conditions or
deadlocks in ERLANG. For instance, a common ERLANG deadlock is code
like Listing 1.2. This code deadlocks in test/0, because the calls to req/2
in handle_request/1 call the current process, and it can’t proceed to receive
this new request from its mailbox until it has finished processing the current
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1 | -module(deadlock).
-compile (export_all).

req(Pid, Request) —
5 UniqueRef = make_ref (),
Pid ! {req, {self(), UniqueRef}, Request},
receive {reply, UniqueRef, Reply} —
Reply
end.
10
server_loop () —
receive {req, {Pid, Ref}, Request} —
Response = handle_request (Request),
Pid ! {reply, Ref, Responsel
15 end,
server_loop ().

handle_request ({add, X, Y}) —
X + Y,

20

handle_request ({add, X, Y, Z}) —
XY = req(self (), {add, X, Y}), %/ Deadlock Here
req(self (), {add, XY, Z}).

25 |test () —
Pid = spawn(fun server_loop/0),
req(Pid, {add, 3, 2, 41}).

Listing 1.2: A Deadlock in ERLANG

request.

1.2 BaNISHING Bucs

Unfortunately, regardless of the programming model they use, programmers
are only human and will inevitably still make mistakes, and no programming
model exists that can prevent every single bug.

Programmers, however, are clever enough to know what they’re not good
at, and have devised systems that allow them to use computers, which are far
more systematic than humans, to verify their programs. These systems fall
into two broad categories: testing or static analysis systems.

Testing systems rely on running parts of the system and checking their
behaviour against a finite number of test cases. These tests can only show the
presence of bugs; they can never guarantee that a program is totally bug-free.
This doesn’t mean they’re useless, instead like all things, they have their
limitations.

There are lots of forms of static analysis. By far the most popular static
analysis systems are Type Systems. There are two main forms of type systems:
dynamically-checked type systems, and statically-checked type systems.

Statically-checked type systems are conventionally implemented in a com-
piler phase, preventing the production of executable code that doesn’t agree
with the specified type information. Haskell and Java have a statically-checked
type systems which primarily focus on checking the arguments to and results
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of sequential procedure calls. This turns out to be very successful at finding
sequential bugs, but concurrent systems need a novel approach.

Dynamically checked type systems, on the other hand, check the types of
values during run time, as functions are called or values are returned. This
means that, like testing, the program must be comprehensively run to find
out if it has any type errors.

Erlang has an optional static analysis tool called dialyzer. It can do type
checking, but it is not integrated into compilation, so a programmer does
not have to run the tool. The type checking it does is also weaker than most
type systems, employing a mechanism called success typing, which can cope
with the dynamic nature of existing ERLANG library code, but cannot provide
particularly strong guarantees of correctness.

Instead, I chose dependent typing to express the concurrent properties I
want to be able to reason about in our programs. Dependent typing, unlike
most type systems, makes no distinction between types and values, allowing
values to be part of the types and vice versa. This makes them able to provide
even stronger guarantees than conventional static typing. While dynamically-
checked dependent types may be possible, statically-checked dependent types
seem more viable.

1 |data List a = Nil | Coms a (List a)

-- Correct Version

append :: List a — List a — List a
5 | append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

-- Incorrect wversion, but type checks
append’ :: List a — List a — List a
10 | append’ Xxs ys = XS

Listing 1.3: A Buggy Haskell Program

To demonstrate the power of dependent types, I'm going to illustrate what
they can do with an example.

In Listing 1.3, we see a list type and two version of a function called
append. The list type allows me to know that not only do I have a list, but
also that lists with different types of elements are different types, so I can
reason about their contents. In the case of the two append functions, they both
have the same type, but these functions do different things, and there’s no
way Haskell can make sure that all the elements of both lists go into their
result. The type checker has helped me, but hasn’t prevented this bug.

The same code might look like Listing 1.4 in a dependently typed language,
in this example IDr1S. In this case, I'm using a type called Vect, which is
exactly like the list type above, only it also knows how many elements are in
the list (the Nat argument). This number is just a regular IDpr1s value, and the
+ function used is also just a normal IpRr1s function. Now I can use this extra
information in append to verify that the size of the returned list is the sum of
the sizes of the two original lists. The only way to satisfy this for all values of
n and m is for me to actually append the first list onto the second.
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1 |data Vect : Nat — Type — Type where
Nil : Vect 0 a
Cons : a — Vect n a — Vect (1 + n) a

5 | -- Correct Version
append : Vect n a — Vect m a — Vect (n + m) a
append Nil ys ys

append (Cons x xs) ys Cons x (append xs ys)

10 | -- Incorrect Version
append’ : Vect n a — Vect n a — Vect (n + m) a
append’ xs ys = Xs

Listing 1.4: Verified Append in IDRis.

In the case of append’, I have given an incorrect definition, and the type
system will tell me this at compile time. This is exactly what I want our
system to be able to do, especially with more complex programs.

1 | -module (append) .
-export ([append/2, append_dyn/2]).

-spec append([any ()], any()) — any().
5 |append ([], Y¥s) —

Ys;
append ([X|Xs], Ys) —

[X|append (Xs,Y¥s)].

10 | -spec append_dyn([any ()], [any()]) — T[any()].
append_dyn([], Ys) when is_list(Y¥s) —

Ys;
append_dyn([X|Xs], Ys) when is_list(Y¥s) —

[X| append_dyn(Xs, Ys)].

Listing 1.5: Type-annotated Append in ERLANG

By comparison, dialyzer, the ERLANG static analysis toolkit thinks that the
type specification on append/2 in Listing 1.5 is correct but this is almost
entirely useless. It tells me this function will take a list of anything and
another anything, and give us back something. This is only marginally
more information to verify a program against than the signature of the most
general 2-argument function f (any (), any()) -> any(). The way to make
this code safer is to introduce run-time checks, such as when is_list(Ys) in
append_dyn/2.

1.2.1 Idris

Ipris is a dependently-typed pure functional programming language. It is
under active development for research, lead by Edwin Brady. Ipr1s has a vari-
ety of interesting features including the ability to write new code generation
backends without affecting the rest of the compiler, and the ability to interact
easily with existing code written in other languages via its foreign function
system.



1.3 OBJECTIVES

My project, as described, fits into three strands: Compilation, Library Support,
and Modelling.

Compiling Idris programs into Erlang

1.
2.
3.

Formalise how Ipris will compile into ERLANG (Basic, Document)
Create an IDpR1s to ERLANG compiler backend (Basic, Executable)

Document how to create new compiler backends for Ipris (Basic, Docu-
ment)

Create a small set of example IDRIs programs to demonstrate the new
ERLANG compiler backend (Basic, Example Programs)

Devise a foreign call interface for Ibr1s (Intermediate, IDR1s Extension
& Document)

Providing ways to verify the behaviour of Erlang programs

6.

10.

Create a small set of concurrent Ipr1s example programs that can com-
pile into ERLANG (Intermediate, Example Programs)

Give a typed API to ERLANG’s runtime system (Intermediate, Library)

Give a dependently-typed API to ERLANG and its runtime system
(Advanced, Library)

Create a small set of dependently-typed concurrent IDr1s example pro-
grams that can compile into ERLANG (Advanced, Example Programs)

Devise a Hoare-like logic for ERLANG and its runtime system (Advanced,
Document)

Modelling concurrency calculi in Idris

11.
12.

13.

Model a concurrency calculus in Ipris (Basic, Example Programs)

Create a verified and executable concurrency library for IDr1s based on
ERLANG and the Actor model (Intermediate, Library)

Create a verified and executable concurrency library for IDr1s based on
another concurrency calculus (Advanced, Library)

14 CONTRIBUTIONS

The main contributions of my dissertation are:

* A new compiler backend so that IDR1S programs can be compiled to run

on the ERLANG runtime system.

* A dependently-typed system that allow us to reason about concurrent

IprIS programs.

* A library that formalises the behaviour of several ERLANG/OTP beha-

viours.



1.5 OUTLINE

This dissertation is split into five parts. I start by describing various related
work and alternative approaches in Chapter 2. In Chapter 3 I describe the
design decisions behind my compiler and related libraries, including how to
create your own code generator for Ipris, followed by a brief description of
their implementation details in Chapter 4.

Chapter 5 evaluates my approach based upon its own merit and compares
it to other approaches. Chapter 6 concludes my dissertation.






CHAPTER 2

Related Work

Knock Knock
Race Condition
Who's there?

Anon

There has been lots of research done around the topic of concurrency and
program verification, some of which I outline below.

2.1 MOoDELLING CONCURRENCY

Fundamentally, programming languages are just a way of presenting the be-
haviour of a given system to a programmer in a coherent and understandable
way. This means that not only does a language have structure and syntax, but
we also understand its behaviour against an abstract model that explains the
bigger picture.

Concurrency is all about decoupling and encapsulating computations (usu-
ally called Threads or Processes) such that they may be performed independ-
ently of each other, and such that the dependencies between computations
are clarified and may be minimised.

I've already mentioned shared-memory concurrency, where each thread
of concurrent computation has access to some (or maybe all) of the same
memory as other threads. Any thread is free to alter any memory it has access
to, but without mutexes or locks, the possibility of changing state that another
thread is accessing or changing is present, which could lead to bugs. Proper
use of mutexes prevent this kind of bug by preventing more than one thread
from being in a critical section where it alters that memory at the same time.
This is the model used by POSIX Threads, and the runtime systems of Java,
CH#, amongst many others.

Unfortunately, shared-memory concurrency requires a very low-level un-
derstanding of what’s happening to memory during execution. Another
problem with this approach is that without mutexes or locks, the result of the
computation can depend on how the scheduler chooses to run the threads,
which the programmer has no control over.
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Because of all these problems, computer scientists have looked for other
models to use to reason about concurrency.

2.1.1 Message-Passing Concurrency

The overall guideline chosen by message-passing concurrency turns the con-
ventional wisdom of shared-memory concurrency on its head. In shared-
memory concurrency, programs communicate by sharing state, i.e. one thread
alters some memory such that other threads may use the value it has left
behind.

In message-passing concurrency, however, programs share state by com-
municating, i.e. a process' sends messages to other processes that contains
the information they require to continue. This means that each process can
be isolated from all the rest, so that no process may directly alter the internal
state of another.

The advantage of this way of organising a system is that when program-
ming the behaviour of a single process, the programmer does not have to
think about any of the other processes, except to remember the protocol by
which they communicate.

There are several existing message-passing models, all of which differently
codify the details of how communication work.

* Milner’s Calculus of Communicating Systems [19] proposes a system of
agents that communicate by offering or receiving labels from or to
each agent’s ports. This makes no mention of the underlying runtime
system implementation, but assumes synchronous communication. An
interesting part of this work is the composition system, whereby agents
are linked together by their compatible ports in order to organise them
into communicating with each other.

* Hoare’s Communicating Sequential Processes [11] chose a system of in-
dividually synchronous channels, whereby each process can have ref-
erences to multiple channels for sending or receiving messages, but
sending a message blocks the sender until the receiver retrieves the
message. This model has been adopted in programming languages like
occam or Go.?

* In Hewitt and Baker’s Actor model [10, 2], each process has a single
message queue, which any actor can send messages to. Sending a
message doesn’t block the sender, and the receiver can choose when
(and in which order) to process messages from its queue. The Actor
model has been adopted by languages such as ErLanG® and Scala.*

Actors can not only send messages, but they can also spawn new actors.
This makes the Actor model strictly more powerful than the sequential

IConventionally, Thread refer to a shared-memory concurrent computation, and Process refers to a
message-passing concurrent computation.

Zhttp://golang.org/

Shttp://wuw.erlang.org/

4http://www.scala-1lang.org/
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computation model (where there is no concurrency at all), and CCS and
CSP (where processes are organised statically).

2.2 ERLANG

I chose ERLANG in particular for a few reasons. Firstly, and probably most
importantly, it’s a language I'm familiar with after working with it on-and-off
for over five years.

ErRLANG, while still relatively unpopular,® is seeing adoption in various
specific applications around networking and the internet. I would ascribe this
to the fact that it was expressly designed for controlling network switches that
had to be highly resilient to failure.

Another good reason for choosing ERLANG is that its implementation of
the Actor model is both simple and powerful. There are effectively only three
concurrency operations: send, receive, and spawn.

To promote resiliency in ERLANG programs where actors are being created
and dying dynamically, ERLANG introduces one further concept called a link,
which allows one actor to subscribe to be notified when a linked actor exits.
This allows systems to be resilient to dynamic failure, to the point where
individual process crashes are encouraged so that errors don’t spread through
an application. While links are interesting, I will not be mentioning them
again in my dissertation except to discuss some related work.

A more complete description and history of ERLANG is in [1], which
includes discussion of various of the language’s design decisions.

2.3 DePENDENT TYPES & IDRIS

In the same way that programmers need models to reason about concurrency,
type systems are also a model for reasoning about computation. In particular,
programmers use statically checked type systems to enforce particular beha-
viour in our programs, according to programmer-defined specifications (type
annotations).

I have previously illustrated why dependently-typed languages are inter-
esting and useful in Section 1.2, but why in particular did I choose IprIs®
instead of Agda’ or Coq®?

I chose IpR1s because I was also more familiar with it than the others, but
also because Brady, IDr1s” creator, was willing to supervise me and help me
with any questions I had.

Another reason for choosing Ipris above Agda or Coq is that it has been
designed for compiling to executable general-purpose code, rather than just
for defining and proving theorems. With Coq or Agda, you can synthesise
definitions from your code into other languages, but this isn’t the same as

SErLaNG did not feature in the top fifty places of TIOBE’s Popular Programming Languages
Index in March 2015. http://www.tiobe.com/index.php/content/paperinfo/tpci/
®http://www.idris-lang.org/

"http://wiki.portal.chalmers.se/agda/pmwiki . php

8https://coq.inria.fr/
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direct compilation, as these definitions need more code around them to work
in a complete executable system.

IDR1S, on the other hand, has a foreign function system built-in, and allows
the programmer to choose from various code generation backends. The
compiler infrastructure has been designed expressly so third-party backends,
like the one that I have produced, integrate seamlessly with the core of the
IpRI1S compiler.

2.4 REASONING ABOUT CONCURRENCY

There is some recent work by Brady on using Ibris for concurrent program-
ming, with a system he called ConclO.” How this system works is that you
define a protocol as a type, and then this allows you to define programs
for each party in the protocol such that they behave in a way that satisfies
the protocol, up to completion. ConclO is a good solution to this problem,
however it uses a system with channels, which does not correspond to how
ErRLANG and the Actor model work. I will, however, be coming back to Brady’s
idea of a token that ensures programs make progress through the defined
protocol.

Using IDRis is not the only way to use types to reason about concurrency.
Session Types [12, 13, 14] were devised to directly solve the problem about
reasoning about concurrency and distribution using type systems. They take a
similar approach to ConclO, where the protocol is defined, and then programs
are defined for each party according to the protocol. The main difference
between session types and ConclO is that ConclO still has all the power of
Ipr1s” dependent types for reasoning about the sequential computation in the
implementation of each party.

There are also other tools for creating specifications of concurrent beha-
viour and verifying programs against them, such as Spin'’ and TLA+,'! but
these are external tools that don’t have the same language integration that
statically checked type systems do.

2.5 REASONING ABOUT ERLANG PROGRAMS

There has already been some work done to verify the behaviour of concurrent
ERLANG programs.

As I have mentioned, ERLANG does have a type system [16], but it’s limited.
Programmers can only work with existing types defined in the language, but
which they can use these to define new structures. Functions can operate on
whichever data types they want, including what might appear to be disparate
types. There are functions for checking types at run time, but no static type
checking system is built into the language.

Sagonas has done some work on tooling around ERLANG's type annotations,
devising a system called dialyzer [15]. This is an external suite of tools that you

9Edwin Brady. ConclO. 22nd Feb. 2015. URL: https://github.com/edwinb/ConcI0.
Onttp: //spinroot . com/spin/whatispin.html
Uhttps://tla.msr-inria.inria.fr/tlaps/content/Home.html
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can run on an ERLANG program that will check the provided type annotations.
Not only that, but dialyzer also has an inbuilt system for detecting common
race conditions in ERLANG programs [6].

In terms of using dependent-types to verify ERLANG programs, the most
complete project is called verlang,'” which synthesises ERLANG code from Coq
programs. Unfortunately, this requires writing the Coq theorems in a certain
way to avoid run-time exceptions and to have them callable from ERLANG.
This approach also generates inefficient code which requires wrapping to be
useful in existing ERLANG applications [17].

There has been some other work on generating distributed ERLANG from
Coq code, but this used Haskell as an intermediate synthesis language, which
is also inefficient and over-complex [18]. This research approaches the problem
of verified concurrent programs.

There has also been work by the Session Types community on Erlang,
with a paper about using Session Types to reason about a subset of Erlang, in
particular using its unique reference system to emulate channels [20]. Fowler’s
work on using Session Types to reason about dynamic supervision of ERLANG
programs'? is also interesting, but doesn’t use dependent types, and it has
been developed concurrently to this work.

12Tim Carstens. verlang. 3rd Aug. 2013. URL: https://github.com/tcarstens/verlang.
13Simon Fowler. Monitoried Session Erlang. 13th Mar. 2015. URL: https://github. com/SimonJF/
monitored-session-erlang.
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CHAPTER 3

Design

Formal mathematics is nature’s way of let-
ting you know how sloppy your mathemat-
ics is

Leslie Lamport

There are two main parts to this project: an IDR1s to ERLANG compiler; and
a system for verifying the behaviour of concurrent programs written for the
ERLANG runtime system.

3.1 CRrEATING A NEw COMPILER BACKEND

The first major part of my project is a new backend for the IDR1s compiler,
such that I can compile IDR1s into ERLANG.

While it may seem like a hard task to add a new backend to the IDRr1s
compiler, recent changes have meant that it’s much easier than before, and
that no official acceptance by the IDRr1s team is required. Writing an IDbris
backend does, however, require proficiency with Haskell, as this is how the
backend will interface with the Ipr1s compiler.

As I was only working on a code generator, the interface between my code
and the IDr1s compiler is small. At no point during writing my compiler was
I required to learn about dependent types, type checking, proof obligations,
or any of the other wonderful features that IDr1s has. All Ipris code is fully
type-checked and erasure is performed before the intermediate representation
(IR) gets to the code generator.

A Code Generator is made up of two parts, conventionally. There is
usually an executable, in my case named idris-erlang. The other part is
a Haskell module, in my case named IRTS.CodegenErlang, which contains
all the functions that actually generate code. Brady has released an example
repository with which to get started.'

1Edwin Brady. Idris Empty Code Generator. 3rd Mar. 2015. URL: https://github.com/idris-
lang/idris-emptycg.
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The executable (in src/Main.hs in the idris-erlang?’ repository) doesn’t
do very much. The only thing that I changed from the example is that: any
references to emptycg were replaced with references to erlang; the import of
IRTS.CodegenEmpty was changed to IRTS.CodegenErlang, likewise the call
to codegenEmpty was replaced with a call to codegenErlang; and the default
output file name was changed to main.erl to match what ERLANG expects.

Now, onto the code generation module. This part of the Iprrs compiler has
been designed to allow for a large amount of flexibility. I created a function of
type CodeGenerator, which can be found in src/IRTS/CodegenCommon.hs in
the IDRIS repository.

3.1.1 Code Generation Information

Most backends will only require a couple of fields from CodegenInfo, in my
case I only used defunDecls, outputFile and exportDecls.

24 | data CodegenInfo = CodegenInfo { outputFile :: String,

25 -- elided fields
includes :: [FilePathl],
importDirs :: [FilePath],
compileObjs :: [String],
compileLibs :: [Stringl],

30 compilerFlags :: [String],
simpleDecls :: [(Name, SDecl)],
defunDecls :: [(Name, DDecl)],
liftDecls :: [(Name, LDecl)],
interfaces :: Bool,

35 exportDecls :: [ExportIFacel]

}

Listing 3.1: Abridged CodegenInfo from src/IRTS/CodegenCommon.hs in the
IDR1S repository

e outputFile contains the path to the file that will be created by the
ERLANG backend, if everything is successful.

* includes is a list of file names to include, as specified with %include
directives in source files. These are filtered so you only get the include
files specified for your backend. This is in particular used by the C
backend for headers, but also the Java backend for imports.

* importDirs is the list of paths on the idris import path, as specified by
--idrispath at the command line. This is used by %1ink directives as a
search path when for specified files.

* compileObjs is a list of file names to link with, as specified with %1ink
directives. These are filtered in the same way as includes, i.e. by
matching backend. This is in particular used by the C backend.

2 Archibald Elliott. Idris-Erlang. Apr. 2015. URL: https://github.com/lenary/idris-erlang

16


https://github.com/lenary/idris-erlang

* compileLibs is a list of libraries to link against, as specified with %1ib
directives. They are filtered in the same way as includes, i.e. by match-
ing backend. This is in particular used by the C backend, but also by
the Java backend for specifying dependencies.

* compilerFlags is a list of compiler flags to add, as specified with %flag
directives. They are filtered in the same way as includes, i.e. by match-
ing backend. This is in particular used by the C backend.

* simpleDecls, defunDecls, and 1iftDecls I will get to in just a moment,
they’re three different intermediate representations that code could be
generated from, though a code generator will only use one of them.

¢ interfaces and exportDecls are parts of the new export infrastructure,
respectively they are an option that tells you whether to only generate
an interface (rather than an executable file), and a list of functions and
types to export to the host system that’s having code generated for it
(i.e. a way to call Ipr1s generated functions from C programs).

Looking back over the three kinds of declarations (simpleDecls, defunDecls,
and 1liftDecls), we have to choose one (and only one) to generate code from.
They all represent the same information, but they assume different features in
the language we're generating code for, so using one that is too expressive for
a low-level language would be a bad idea. Full descriptions of these forms
are provided in Appendix C.

The highest level version of these is 1iftDecls which assume a language
with lambdas and laziness. I think you’d only want to use these if you were
generating code for a higher-order functional language like Haskell or OCaml.

The next level is defunDecls which is like 1iftDecls only without explicit
laziness or lambdas, aka Defunctionalised form. In this case, all functions are
fully applied when it comes to evaluation. This is the level I chose for my
ERLANG backend, given ERLANG has no concept of laziness, and functions
in ERLANG have to be fully applied. One of the interesting things about this
approach is that all functions are applied via two large case statements.

The simplest level is simpleDecls, which is like defunDecls except that
functions are only applied to variables (rather than arbitrary expressions), aka
Applicative Normal form. IDR1s has a bytecode format it can generate from
these simplified declarations, which is bytecode for a stack-based VM. The C
and JavaScript backends both use this bytecode for code generation.

As I mentioned, I chose the defunctionalised form as it most closely re-
sembled ERLANG without having to add significant complexity to the compiler.

One of the slight peculiarities of IDRISs is that every single included function,
across all used modules, is included for code generation into a single file.
ERLANG does have a module system, but I essentially completely ignored it
and put all generated functions into the same file. That said, the export system
does include a way to compartmentalise functions, which I shall return to.
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3.1.2 Declarations

As the Ipr1s compiler is defined, there are essentially two main different kinds
of declaration: Constructors and Functions.

37 | data DDecl = DFun Name [Name] DExp

| DConstructor Name Int Int
Listing 3.2: DDecl definition from src/IRTS/Defunctionalise.hs in the IDRIS
repository

Constructors (DConstructor) are really simple. They have 3 parts: a unique
name, a unique tag, and an arity. The name inside the constructor will always
match the name in the pair you find the constructor declaration in. Secondly,
any time the name is referred to, for instance in construction or projection, the
unique tag will also be included in the reference, so you don’t need to keep
track of the mapping in the code generator. The tag is in particular used by
the C backend to identify constructors, because switch statements in C can
only operate on integers.

Functions, (DFun) of course are a lot more complex. They also have 3 parts:
a name, a list of argument variables, and an expression. As with constructors,
the name will always match the name in the pair you get in defunDecls. The
arguments are a list of names of argument variables that will be used later in
the body of the function. Finally, the expression is the body of the function.

3.1.3 Functions

Expressions are the contents of each IDRr1s function. They are the main part of
where code generation happens.

DV LVar

DApp Bool Name [DExp]

DLet Name DExp DExp

DUpdate Name DExp

DProj DExp Int

DC (Maybe LVar) Int Name [DExp]

16 | data DExp =
\
\
|
\
|
| DCase CaseType DExp [DAlt]
}
|
\
\
|

20

DChkCase DExp [DAlt]

DConst Const

DForeign FDesc FDesc [(FDesc, DExp)]
DOp PrimFn [DExp]

DNothing

DError String

25

Listing 3.3: DExp from src/IRTS/Defunctionalise.hs in the IDRIS repository

Again, I'm going to go through in order and describe each of the kinds of
expressions in Listing 3.3.

* DV is just a variable reference. An LVar can either be a local variable, or
what the code generation calls a global variable which is in fact just a

named variable.
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Local variables are unnamed and instead are numbered back through
recent scopes, with the most recently defined local variable at index 0
and the last function argument at the highest index. This is called De
Bruijn indexing. A code generator will need to cope with variable scope,
including the ability to push new scopes and pop old scopes. In the
defunctionalised form, full De Bruijn indexing hasn’t happened, so most
variables will still use global names. Applicative Normal (aka simplified)
form uses full De Bruijn indexing.

DApp is ostensibly function application. The expression includes the
function name to call, and a list of expressions which correspond to
the arguments to that function. The boolean specifies whether or not
the application is a tail-call, which may require special treatment in the
language you're generating code for.

I say ostensibly function application, because the name could refer to a
constructor, in which case the arguments are each a field. If the backend
is not generating a function for each constructor, it will need to have a
way to check if the name corresponds to a known constructor, at which
point it should instead construct a value. In this case it won't get the
constructor unique tag. There is the expectation that each constructor
will turn into a function of the same name and arity, so if the code
generator does do so, it won’t need to keep track of constructors.

DLet corresponds to a let statement, i.e. let x = £ y in g x. The first
expression is the expression to bind to the named variable. The second
expression will be in a new scope including the new variable, and may
refer to this new variable.

DUpdate doesn’t require any special treatment, except to generate the
expression it contains. There is no requirement to update the named
variable with the result of this expression.

DProj is a projection, i.e. accessing a field in a constructed value. The
given expression will produce a constructor, and the integer is a zero-
indexed access into the constructor’s fields.

DC is a constructor invocation. The expressing includes the constructor’s
name, the constructor’s unique tag (mentioned above), and a list of
expressions that correspond to the constructor’s fields. This may also
contain the name of a variable where the code generator can reassign
the constructor into, if it is generating code with mutable variables, but
this is not required.

DCase is a case statement. The aim is to evaluate the result of the
expression against alternative branches (DA1ts).

A case branch (DA1t) has one of three forms:

— DConCase matches against the given constructor (identified with
both name and unique tag), providing variable names for each
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field in the constructor which will be free variables in the provided
expression.

— DConstCase matches against the given constant, evaluating the
given expression. No extra variables are bound during matching.

— DDefaultCase is a final case which will always come last, and
should match anything. It won’t bind any variables, and just
evaluates the given expression.

DChkCase is like DCase, only the compiler doesn’t know what type it will
return. This is in particular used in the case statements that all function
application goes through. The variants of the case branches are DALt,
the same as for DCase.

DConst is a literal constant. These I shall explain further later.

DForeign is a foreign function call. These are used for a lot of function-
ality in the Prelude (especially around files and processes), so they’re
not something code generation can avoid. The system around foreign
functions has recently changed, and I will explain it fully later. The
arguments, in order, are: the return type IDR1S requires, the function
identifier, and a list of pairs of argument type and argument expression.

DOp is a call to one of the primitive functions, as defined in PrimFn (in
src/IRTS/Lang.hs). They cover a wide variety of functionality from
basic mathematics through casting to runtime behaviour like forking
processes. A full listing of these functions and their expected types is in
Section C.2.

DNothing represents something that has been erased from that position,
and won’t be used or inspected. It stays as a placeholder so that the
IDpr1s compiler doesn’t need to change the arity of functions during
erasure. The arity of constructors will be changed during erasure to
remove erased fields (such as implicit type arguments or proof objects).

DError represents the program throwing a run time error, with the given
string as a message. This should not cause the code generator to throw
that error, but it should be thrown at run time.

3.1.4 Constants

There are various constant literals that a code generator will need to be able
to generate, and because Idris operates at both the type and the value level,
some are for values and some are for types, for instance the C code generator
requires knowledge of types for declaring variables.

Constants are fairly self-explanatory beyond this. I and BI differ only

because the latter represents an arbitrary sized integer, whereas the former
is for fixed-width integers. There are various types of integers. Firstly,
AType AFloat represents a double-precision floating-point number. Then
AType (ATInt x) represents an Integer, with x being either ITBig for arbitrary-
precision integers, ITNative for fixed-precision integers (the size of these
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integers is up to the backend), ITChar for the representation of characters,
and ITn represent unsigned n-bit integers.

There is no assumed encoding of Characters or Strings, instead the backend
gets to make its own choice.

The constructors starting BnV (where n is a number) are for vectors of
various sizes. These are only used by the C backend, and I think it is reasonable
to throw a compile-time error if a user tries to use them.

3.1.5 Primitive Operators

Idris has around 60 primitive operators (many more if you count each numeric
variant as a different operator). They can be categorised in various ways, with
operators for arithmetic, operators for type casting, operators for strings,
operators for vectors, and operators for run-time functionality. A complete
listing of the Primitive Operators is in Section C.2.

The arithmetic operators are parameterised by the numerical type they
operate on, for instance Integers or Doubles (see the description in Constants
about numerical types). In the case of the comparison operators, the result of
this operator will usually have case analysis performed on it, and the cases
expect a 1 for true and a 0 for false (as in C).

The casting operators are much the same, though — in the case of the
integral casts — they are also parameterised by the two types you are casting
between.

The string operators assume the underlying string implementation works
like a list of characters, but you can substitute in your own representation and
corresponding implementation of the operations

The operators for buffers and vectors can be ignored, as I have ignored
buffer and vector literals, again a compile-time error is reasonable.

The operators for runtime functionality are a bit of a mixed bag, and really
require individual explanation, which I have done in Section C.2. These are
more interesting because they’re now arbitrarily extensible using external
primitives.

3.1.6 Foreign Calls & Exports

I will fully address foreign calls in Section 3.2, but right now is a good point
to talk about exactly what a foreign function system is there to do.

I need a way of calling native ERLANG functions from my generated func-
tions. Because they have been generated from Idris, the generated functions
won’t work like native functions, so I need to do some translation of the data
before I do the call. For each argument to the call, it must be translated from
my generated interpretation of that data type into the native data type. And
for each return type, it must be converted from the native type back into the
generated representation of that type.

Exported functions work the opposite way around, their arguments need
to be dynamically type checked, then converted into the representation used
by the Idris backend. Return types are then converted from the backend
representation back into their native data types.
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How do we know how to translate the types? The code generator author
gets to choose how each type is represented, as long as the functions match
their implementation.

3.2 TuHE NEw IO & FOREIGN SYSTEM

Given the IDr1S compiler supports multiple backends, it is not a big leap to
think that different generated code may be running in different computational
environments. As I0 is the way of encapsulating these changes to the outside
environment, via Foreign calls, it too must be able to cope with these different
environments.

For instance, the interactive environment requirements of an IDRIS pro-
gram being compiled to an executable (via C) are different to those required
when compiling IDr1s into JavaScript for the browser. The former has an
environment containing files, processes, and other POSIX constructs; whereas
the latter has an environment containing web pages, HTML and the DOM.

I was proposing to augment the primitives functionality (which is aimed at
pure functions, despite the presence of 10 functions) with a negotiated system
of possible side-effecting interactions based on [9]. This might have allowed
the backend to find out all the different interactions (and their types) that
each program used, and check to make sure they were all possible within that
backend. So, for example, if a program used an appendElement interaction,
then only backends which allowed this interaction could compile this program,
for instance browser-based backends. In the same way, if your program relies
upon file input and output, that could have been a different set of interactions.

Several things were going to make this hard, not least allowing any new
backend to propose new interactions with new types that would augment,
rather than replace, the existing interactions.

In the end, this work got superseded by Brady extending how foreign
functions worked, which is a much more sensible way of addressing the
problem, as this would have had to change anyway too.

Brady’s redesigned I0 and foreign system was borne out of wanting to
make it easier for backend designers to expose differing environments to
programs written in IDR1S, but with a minimum of changes.

3.2.1 How New IO Solves This

Until recently, IDr1s’s Foreign call system assumed that all foreign calls are
into C, and therefore the types of these calls would be C-like in nature, and
would conform to C’s type system, so would include things not only like
Strings, Floats or Pointers, but also Voids and Managed Pointers.’

In Erlang, for instance, this isn’t great, as Erlang doesn’t have the concept
of Void, and does not require any Managed Pointers. On the other hand, there
are types like Lists, Tuples, Atoms* and Functions that we would like to be
able to use from IDRIS programs.

3Managed Pointers are a way of registering some C memory such that its lifetime will be
controlled by the Iprrs GC system.

4ERLANG Atoms are akin to Lisp Symbols, they’re string-like, but only used for identity and
equality, not for string manipulation.
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The other large difference is how functions in C and Erlang (and other
environments) are identified. In C, there is a single global namespace for
functions, whereas in Erlang, functions are spread between different modules.
In an object-oriented language, like JavaScript, some functions may have to be
called on a particular object instead of just called.

These two related pieces of information: a set of types that the outside
environment understands, and what amounts to a calling convention for
environment functions describe the FFI system.

10’ has been introduced, which is parameterised by a structure containing
the FFI description. Then IO has just been defined as I0° C_FFI, or the
environment for interacting with C programs.

This means I can provide a library with my ERLANG backend which defines
how to interact with the ERLANG environment. I called this environment EIO.

Functions that make foreign calls are implemented using the foreign
function. foreign takes the FFI description, a function identifier (the type
of which is deduced from information in the FFI description), and a type,
and attempts to devise a function of the specified type. How it devises this
function is that it does a proof search to construct the structure that DForeign
is expecting, using the types of each argument, and the types that the FFI
description contains.

The proof search in particular has to know how to translate native IDR1s
types into native backend types, so we in fact describe the ERLANG types in
terms of a translation from IDRis types, as shown in Listing 3.4.

The important part of this code is Erl_Types, which relies on the other
definitions. Erl_Types shows the proof search what types it is possible to
represent in ERLANG, by presenting constructors for the representable types.
This means that the proof search will be able to work out that functions
involving strings can be translated, but those involving Managed Pointers
have to use ErlRaw.

In the last 4 constructors, we introduce some extra conditions on the
translatable types. So, for instance, we can only translate a type of List a
(a list only containing terms of type a) if we can translate the type a. The
same applies to pairs — we can only translate them if we can translate both
elements of the pair. Erl_FunT essentially says that we can only translate
functions (as arguments) if they operate on and return a translatable type.
Erl_NumT just says the only kinds of numbers we can have are Characters,
Integers or Doubles. Lastly, we use the Erl_Any to allow us to pass arbitrary
IDRIS terms into ERLANG which it won’t understand, but also won’t modify.

Because we very carefully designed how IDRis compiles into ERLANG,
including special casing constructors for lists and pairs, no translation is
required when passing these kinds of arguments from Ipris to ERLANG.

If we needed to have any guards, the FDesc structure would inform the
backend of which parts of Erl_Types had been used to construct the type
using the FCon and FApp constructors, which would allow us to correctly
translate both the arguments and the return types.
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1 MkERaw : (x:t) — ErlRaw t

abstract
data Atom : Type where
5 MkAtom : (x : String) — Atom

data Erl_NumTypes: Type — Type where

Erl_IntChar : Erl_NumTypes Char
Erl_IntNative : Erl_NumTypes Int
10 Erl_Double : Erl_NumTypes Double
mutual
data Erl_FunTypes : Type — Type where
Erl_Fun : Erl_Types s
15 — Erl_FunTypes t
— Erl_FunTypes (s — t)
Erl_FunIO : Erl_Types t — Erl_FunTypes (IO’ 1 t)

Erl_FunBase : Erl_Types t — Erl_FunTypes t

20 data Erl_Types : Type — Type where
Erl_Str : Erl_Types String
Erl_Atom : Erl_Types Atom
Erl_Ptr : Erl_Types Ptr
Erl_Unit : Erl_Types ()

25 Erl_Any : Erl_Types (ErlRaw a)

Erl_List : Erl_Types a — Erl_Types (List a)

Erl_Tupl : Erl_Types a — Erl_Types b — Erl_Types (a,b)
Erl_FunT : Erl_FunTypes a — Erl_Types (ErlFn a)
Erl_NumT : Erl_NumTypes t — Erl_Types t

Listing 3.4: Erl_Types from libs/erlang/ErlPrelude.idr

3.2.2 Foreign’s Dual: Exports

Of course, the other side of foreign functions (which call native code from
generated code) is to allow exported functions (which allow native code to
call generated code).

This gets more complex, because not only do we have to be able to export
functions, we also need to export data types, because the functions won’t be
very useful if they can only operate on foreign types.

The most major problem is that Data Types can be parameterised over
other types, for example List a, but languages like C won’t cope with this.
The current exports system in Idris disallows parameterised types until we can
find a better design to allow more powerful type information to be generated.
As we can see from Listing 3.5, this IDRIs program exports both data types
(Data entries in testList) and functions (Fun entries in testList).

For exported data types, they are just given an identifier. In this case,
it’s a string, but because different backends work differently, the type of this
identifier is also left up to the backend designer, and is included in the data
inside the FFI description. It is required that all data types which are required
by the functions you export are exported too.

In the case of exported functions, they’re given an identifier (of the same
type as the one you used for foreign calls), and the export system will its type
(in a proof search) to provide the backend with information as to its type.
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1 | import Data.List

addLists : List Int — List Int — List Int
addLists xs ys = Xxs ++ ys

nil : List Int

nil = []

cons : Int — List Int — List Int
10 |cons X XS = X ::!: XS

show?’ : List Int — I0 String

show’ xs = do putStrLn "Ready to show..."
return (show xs)
15
testList : FFI_Export FFI_C "testHdr.h" []
testList = Data (List Int) "ListInt" $
Data (List Nat) "ListNat" $
Fun addLists "addLists" §
20 Fun nil "nil" $§
Fun cons "cons" $
Data Nat "Nat" $
Fun Strings.length "lengthS" $
Fun show’ "showList" $§
25 End

Listing 3.5: An Example of IDr1s Exports (from tests/f£i006/££i006.idr)

With multiple FFI_Export definitions in a single IDRIs program, it is
possible to generate functions in multiple files or modules.

3.3 IpRis LIBRARIES

The second part of my project is about using IDR1S to reason about concurrent
behaviour in programs, especially assuming an Actor-based system.

3.3.1 The Problem of General Communication

In ERLANG, as I have mentioned before, there are two completely general
communication operators, send and receive.

Send is an asynchronous operation, returning immediately, rather than
blocking until the other process accepts the message. Messages are stored
in the process’ message queue, and are retrieved using a receive statement.
A receive statement pattern-matches in the same way that a case statement
would, but will scan the whole mailbox, not just the first message. This means
receive statements in ERLANG do not have to be exhaustive, so can opt not to
deal with certain kinds of messages, either immediately, or at all.

But if we have an IDR1s program, given our aim for function totality, surely
this is exactly what we don’t want. What we want is that every message
is handled, in the same way that we want every possible function input to
produce an output.

It turns out that starting with example ERLANG programs, with their
arbritrary communication schemes is not sensible, so instead I think it’s best
to start with much more predictable communication schemes.
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3.3.2 Erlang’s Patterns

During the development of ERLANG, the designers released it internally to
other groups at Ericsson, and then later surveyed the various ways in which
these groups were organising their systems. This work lead to the develop-
ment of the Open Telecom Platform (aka OTP), which is a set of libraries
and systems on top of the ERLANG language that codify most ways in which
ERLANG systems are designed.

Firstly, OTP brought behaviours, which are the module equivalent of inter-
faces. Programmers implement their functionality in modules that conform
to these behaviours so they can use the functionality that these patterns and
libraries bring.

The three main behaviours that were devised are gen_server, a single
process that operates as a server to other client processes; gen_fsm, a more
complex version of gen_server which operates with an internal finite-state ma-
chine; gen_event, a system for broadcasting or subscribing to event streams;
and supervisor, a system for creating supervision trees to dynamically mon-
itor other processes using the links I mentioned earlier.

These systems are much easier to codify because they have much more
regular communication protocols. Of course, I will be creating a dependently-
typed interface for them, which restricts them to communicating only in a
well-typed and sound way.

gen_server is the most widely used of these behaviours, so I'll start with
it. There are two ways of communicating (in a safe manner) with a server: a
synchronous call, to which the server will reply; or an asynchronous cast, to
which the server won't reply, but it also won’t block the client. Given we want
to put a type on these communications, these would seem like a good starting
point.

Firstly, I'm going to call the types any process (including these gen_x
behaviours) uses to communicate its language. We include this language
within the type of a reference to a process, so that we can use this information
when checking messages we send to that process.

In the case of gen_server, the language consists of three parts, the type of
calls, the type of replies, and they type of casts. However, in the case of the
reply type, it would be very restrictive to make all calls have the same reply
type. In this case, we can use the power of dependent types to afford us some
flexibility that we can still reason about. Instead of only having a single reply
type, we can specify a function that uses the call value to compute the reply
type.

For instance, a server managing users for an application may have two
different calls: one that requests the number of users, to which the reply type
is a number; and one that adds a user, to which the reply type is whether or
not the operation succeeded or not. Without the flexibility of using a function
to compute the response type, this style of communication would not be
possible.

I felt that keeping details about the type of initialization data, and the in-
ternal state data out of the process language was fundamental for the language
to be useful enough to be re-used. For instance, the user management service

26



above might get rewritten to be more efficient, changing the internal state
type, but given it still uses the same communication language, processes that
interact with this service won’t need to be significantly rewritten. Codifying
your internal protocols like this is fundamental to modularity.

Despite introducing this dependency between the types, it is still possible
to know which type will be in the reply to a call, as the caller knows what the
call is and the language the server communicates with, and the server will
also know what type to reply with, as it knows the value of the call it just got.

In the case of gen_fsm, we essentially have the same communication
scheme, only with an extra type that specifies the particular states this FSM
can be in. In this case we can also use the current state, along with the call
value, to compute the reply type.

In the case of gen_event, calls are a lot more complex because there are
multiple event handlers, so I ignored them and only allowed the implementa-
tion to handle events, which are like casts, in that they’re asynchronous.

3.3.3 Returning to General Communication

I now have an approach to well defined protocols that looks like it will work,
I can retrace my steps and apply this system to general processes.

We take the idea of a language, above, and for a process, we reduce it
down to one thing: the type of messages which that process expects to receive.
This language is again included in the type of any reference to a process,
which lets us enforce that we only send messages to a process of a type that it
expects.

It is also common that we may want to do remote procedure calling
between two processes, much as calls work for gen_server. In this case, we
have a lot less information about the interaction to check against. The caller
knows the type it is expecting to receive, and the type the remote process
is expecting to receive, but the remote process only knows what it should
receive, and not what type the caller is expecting.

However, as Brady has done in ConclO, we can use IDRr1s’ UniqueType, a
kind of types that programs are only allowed a single reference to a value of,
to enforce progress through the RPC flow. In the caller we generate a tag that
the calling process must pass to receive a reply, and in the remote process we
generate a tag that we pass along with the reply message in order to send a
reply. This UniqueType system also prevents the remote process from sending
two replies to an RPC message, or the caller trying to receive two replies to
the same RPC.

3.4 CoNCURRENCY CALCULI

The Process system that I created above to reason about (well typed) general
actor behaviour is a well-typed subset of the possible behaviour that the Actor
system, in general, supports.

While it is not expressly a Concurrency Calculi, my typed systems for
the OTP behaviours are based on Hancock and Setzer’s work on interactive
dependently-typed programs [9]. This work allows us to define worlds, which
define how we interact with an environment, in a pure, co-inductive way.
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Dependently-typed programs can then be defined in terms of these worlds of
interactions.

Because these programs are defined in terms of a pure and co-inductive
abstraction over the interactions, much more of the program is total, which
allows us to reason about and check more behaviour for correctness. While
the function that runs these programs may be partial, it will usually be a lot
smaller than the main program itself.

This work requires co-induction because we want these programs to be
able to loop or recurse infinitely, something that regular induction prevents.
Thankfully, the programmer does not necessarily have to understand co-
induction to be able to use this system for interactive programs, as IDRIS can
deal with all the required laziness.
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CHAPTER 4

Implementation

How do you solve the dining philosopher’s
problem?

Just add more fork ()

Anon

4.1 ERLANG CODE GENERATION

So how exactly do we generate code for Erlang? src/IRTS/CodegenErlang.hs
contains the entirety of the code to do so.

In particular, we want to look at the generateErl function, which is where
all the specific functionality we need lies. This operates within the Er1CG
monad, which sounds scary, but is only used to let us store various bits of in-
formation about the progress of code generation and to let us throw exceptions
to abandon code generation if it finds a structure it doesn’t understand.

The following formalisation should be read with respect to the Ipris IR
that I describe in Appendix C, in particular with the defunctionalised version
of (expression), as given in Figure C.3.

I won't be giving the definitions of A [(name)], which changes IDr1s
names into ERLANG function names (erlAtom); V [(variable)], which changes
Iprrs variables into valid ERLANG variable names (erlVar); L [{constant}],
which changes IDR1s constants into valid ERLANG terms (generateConst); or
O [({operation)  (expression)*], which produces valid calls for all the primitive
operations (generatePrim). Not only is their source code available in my
repository, but they’re all long-winded, boring functions.

The generateErl is implemented like the D [(declaration)] function defined
in Figure 4.1. To interpret this mathematical notation, it just says I generate
function forms' for each function declaration, and don’t generate anything
for constructor declarations. I don’t completely ignore constructor declara-
tions because they tell me what constructors I should expect (and with which

TERLANG calls the elements of its own IR forms.
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names), but I don’t need to add any specific ERLANG forms to the file for each
one.

D [ function (name) (name)*{expression)] = N [(name),] (V [global (name),],---,V [global (name),])->
& [[{expression)] .

D [ constructor, (name)] = €

Figure 4.1: D [(declaration)] — Defunctionalised Declaration Translation

The & [(expression)] defined in Figure 4.2 corresponds to generateExp. For
each kind of IDR1s expression, we generate the corresponding ERLANG expres-
sion. As you can see, the difference between Ipr1s” IR and ERLANG code is
not that large, and we are not doing anything complex. There are various
complexities to these transformation rules, which I shall now explain.

As I mentioned in Subsection 3.1.3, function application — the second
clause — may in fact contain a constructor, so we use the information about
which constructors exist that we gathered above, and if the (name) refers to
a constructor, we just construct the value rather than calling a function. If
(name) isn’t that of a constructor, we just compile it into a function application,
which uses parentheses around the arguments in ERLANG’s syntax.

In the case of update expressions, I in fact just generate the internal
expression, and ignore other information. This is especially useful as ERLANG
doesn’t have mutable variables.

Projections use ERLANG’s inbuilt element/2 function, which pulls the
requested field out of a tuple. The field number depends on how we generate
the constructors, but as the function is one-indexed, and we are using tagged-
tuples where the constructor name is in the first element, we have to add
2 to the zero-indexed index argument. We know the value of the index
argument at compile-time, which is useful, and means we can do the addition
at compile-time too.

Case expressions in ERLANG operate almost exactly like they do in IpRris.
Because ERLANG is almost entirely homoiconic —i.e. data types are destructed
with the same syntax they’re constructed with — and variables don’t require
special declarations when they appear on the left-hand side of a binding
(assignment), generating the alternatives to match against is simple, and can
reuse the exact same special-cased constructor translation that we use during
construction. The full translation of A [(alternative)] is in Figure 4.3. Like in
IDR1s, the _ variable is a “don’t care” variable that matches with anything but
doesn’t bind a value. Both kinds of case expression in IDRIs use the same
syntax because ERLANG doesn’t mind that chkcase doesn’t know the resultant
type, after all it's dynamically typed.

I play fast and loose with the foreign calls, but this approach is simple and
seems to work. I ignore all the foreign annotations, as I assume the stated
type for the function is correct. I just call the named function name and pass
in all the (expressions) from the (farg) pairs.

It doesn’t matter what the result of £ [ nothing | is, as long as it’s an
expression. I chose the atom undefined, because it’s used like NULL would
be (ERLANG lacks a null type or value). The second reason for choosing this is
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that if there’s a bug in the compiler, this value should help the programmer
find it, though I admit that an atom like ‘the_idris_compiler_has_a_bug’
would perhaps be more obvious. The resultant value doesn’t actually matter
in the general case, as this expression replaces erased values, and erased
values shouldn’t be inspected at runtime.

Lastly, we use the function erlang:error/1 to raise a runtime error for
& [ error (string)]. This should not raise an error at compile-time.

& [(variable)] =V [(variable)]
cl

& [(name) ({expression)*)] (name) § (expression)*] ~ when (name) is a Constructor

N [(name)] (€ [(expression),], ---, & [(expression), ]

otherwise

4

& [ let (name) := (expression) in (expression),] = V [global(name)] = begin & [(expression),] end,
& [[{expression),]
& [ update (name) := (expression)] = & [{expression)]
& [[{expression)],] = element(n+2, & [(expression)])
& [ new (name)({expression)*)] = C [(name) 3 (expression)*]
=

E [ case (expression) of (alternative)* end | case & [[(expression)] of

A [(alternative)] ;

A [f(alternutive)n71]

end
& [ chkcase (expression) of (alternative)* end | & [ case (expression) of (alternative)* end ]

& [{ constant )] L [{constant)]

=
=
& [ foreign (fdesc)y(fdesc), ((farg)*)] = (fdesc), (& [{expression),] , ---, & [(expression), ,])
& [ operator (operator) ((expression)*)] = O [{operator) § (expression)*]
= ‘undefined’
=

& [ nothing ]

& [ error (string)] erlang:error ((string))

Figure 4.2: £ [(expression)] — Defunctionalised Expression Translation

A [ match (name),((name)*) — (expression)] = C [(name),s global (name),--- global (name),] ->
& [[{expression)]

A [{constant) — (expression)] = L [(constant)] -> & [{expression)]

A[ default — (expression)] = _ -> & [{expression)]

Figure 4.3: A [(alternative)] — Case Alternative Translation

Constructor Translation — C [(name) § (<expression>)*], in Figure 4.4 — is a
little bit more complex, but not hugely. In order to make foreign function calls
really simple, I compile the IDRis list constructors into the equivalent ERLANG
list constructors (the first two transformations). I also compile the Unit value
into a 0-tuple, which seems equivalent enough, though the 0-tuple isn’t used
in ERLANG. IDRIS pairs are translated into 2-tuples, which seems fitting, and
means we can use pairs in foreign-function calls.

I compile Ipr1s” True and False into their erlang equivalents, but this is not
the same as run-time booleans, which are the integers 0 and 1. The sole reason
for compiling the booleans to their equivalents is that the code is far easier
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to inspect for something going wrong. This serves no purpose for foreign
function calls either.

Lastly, there are two final options for how I compile a constructor. If it
has no arguments, it can safely be translated to an Erlang Atom (which will
match and compare for equality). If, on the other hand, it has arguments, it
gets compiled to a tagged-tuple.

C [PreludeList.Nilg] = []
C [Prelude.List.(::) § (expression)(expression), | = [ & [[(expression),] | & [(expression),]]
C [MkUnits] = {}
C [Builtins.MkPair § (expression),(expression),]| = { & [[(expression)y], € [(expression),]¥
C [PreludeBool.True§] = ‘true’
C [Prelude.Bool.False§] = ‘false’
Cl(mame) 5] = N [{name)]
C [(name)  (expression)*] = {N [(name)],E [(expression)y] ,- - -,& [[(expression), ]

Figure 4.4: C [(name) § (<expression>)*] — Constructor Translation

Using these defined translations, and the information about the primitives in
Section C.2 it should be possible to recreate my compiler without seeing the
source.

As ERLANG only has arbitrary precision floating-point numbers, this solved
a lot of issues with generating numbers and primitives, as all the arithmetic
primitives all worked and there was only one kind of constant to generate.
The only exception to this is that ERLANG has a different operator for integral
division (div) vs floating-point division (/).

In the case of ERLANG characters, they don’t actually exist, and are just
represented as integer Latinl codepoints. This means converting between
characters and integers is trivial.

ERLANG also doesn’t have a string type, choosing instead to represent
strings as lists of characters. This means that most of the string primitives are
actually using ERLANG's list handling functions.

4.2 RUNNING CONCURRENT IDRIS PROGRAMS

My Process definition (from Erlang/Process.idr) is just defined in terms
of EI0, so that any processes can have whichever side effects they want, like
spawning another process, or sending and receiving messages, which are all
foreign function calls.

Processes can handle Type*s for reasons we’ll see in Section 4.3.

The ERLANG source for these send and receive foreign functions are defined
within irts/idris_erlang_conc.erl, the support library for concurrent Ip-
RIS in ERLANG.

We use a wrapper around messages for a few reasons, the primary one of
which is type safety. If we were to just send any IDR1s term without wrapping
it, then when it came time for a process to receive its messages, it would
retrieve any message, even those from the ERLANG runtime, which are almost
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certainly not the type it is expecting. To get around this, we wrap IDRIs
messages in a structure, PIDRIS_MSG/2 that identifies them and keeps them
from getting confused with other system messages. Within this message
we also store the sender of the message, so the receiver can choose to only
receive messages from a particular sender (casually emulating asynchronous
channels), or from any sender either including or discarding the sender
information.

That said, we only keep the process id of the sender, and I'm not convinced
we can rebuild the information about the type that the sender communicates
with.

One of the interesting features of the Actor model is the operation become,
which changes the functionality of a given process without affecting the
process id or existing message queue. This allows a process to start dealing
with messages in a different way, should they wish. I find it quite interesting,
mostly because it’s similar to, but simpler than, redirect from [9].

1 ‘become : Process 1 a — (a — Process 1’ b) — Process 1’ b

Listing 4.1: Perhaps the Type of become

If I had to give become a type, I think it would be something like that in
Listing 4.1. This looks similar to the type of (>>=), only it also gives the
process a chance to change the type of messages it receives. It’s this last
part which is why we can’t implement this functionality — if a process a
has a ProcRef to a process b, and process b becomes a process that receives a
different language, how does process a know to change the type of its ProcRef
to match the new language the process receives? If it uses the ProcRef of the
old type, it has the capacity to ruin type-safety, something we have worked
hard to achieve.

There is another form of become, which is the form that forwards all
messages to another process: ProcRef 1’ -> (1 -> 1’) -> Process 1 ().
In this case we provide a mapping function so that all messages delivered to
our process can be translated before forwarding them to the requested process.
This at least is more type-safe than the other version, but also is not nearly as
interesting for modelling protocols.

4.3 ENFORCING PROGRESS WITH UNIQENESS TYPES

There are two halves to my implementation of RPC (synchronous calls between
processes): the ERLANG side, and the IDR1s side. The ERLANG side is imple-
mented in irts/idris_erlang_conc.erl, and the IDRIS side is implemented
in Erlang/RPC. idr.

On the IDr1s side, we create a unique token when a process sends an
RPC to another. This essentially identifies the single RPC transaction. The
advantage of this token is that we can use it to compare for equality, and we
know if anyone has another token that is equal, it can only have come from
the same place originally. This means we can match up replies to the right
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calls, even if the replies are coming in quicker than the process is retrieving
them.

On the Ipris side, the call to send an RPC returns an RPCSenderTag. This
is a UniqueType that wraps a copy of the unique token from the ERLANG side.
When the sender wants to retrieve the reply to their RPC, they have to pass
this RPCSenderTag to the receive function, which will consume the tag block
until the reply comes back (or return immediately if the reply was in the
process’ message queue). Because the tag has been consumed, a programmer
can not attempt to retrieve a reply to the same RPC a second time, which
would block forever, as the reply will only be sent once. So, in the case of the
sender’s tag, it prevents the sender trying to replay the receive.

I also use the sender tag to encode the expected message response type,
which we calculated at send-time. This means that had I modelled the Actor
model’s become command, these tokens would still mean we could compute
the right type of the reply.

We do almost exactly the same for the RPC Handler side in Ipris. When
an RPC message comes in, we get both the message and a RPCRecvTag. When
we want to respond to that RPC message (most likely immediately, but there’s
really no requirement for that if we want to interleave RPCs for some reason),
we pass the reply and tag into the reply function. The reply function consumes
the tag, meaning that we can’t reply again. If we were to attempt to repeat
the rpc_send_rep tag rep from line 44, this would be a type error and the
program wouldn’t compile, preventing us trying to reply to a message twice
and fill up a process” message queue with responses they will never read.

In fact, even more helpfully, it’s perfectly possible to send the RPCRecvTag
in a message to another function, and it could reply on behalf of the original
RPC handler. This could be useful if the request required heavy computation
that can be spawned into a separate process. The only problem with doing
this is that I haven’t managed to work out how to associate the type that the
reply is required to be with the reply tag, in order to make sure that replies
are of the correct type.

Both these Unique Types allow me to make sure that only one reply is
sent to a process, and only one reply is ever fetched from the mailbox. An
incredibly useful property of safe RPC systems, even if I don’t have all the
type information I want. Another useful property I haven’t worked out how
to prove is that an RPC process will eventually respond to a message. I had a
few ideas a while ago about it, but none of them were satisfactory.

I imagine the way to encode RPC properly is to have an RPC language
that specifies both the request and the response type (the latter could even
be dependent on the request type). Then when spawning an RPC process, I
can put this language in the type of the process reference so I know what the
reply will come back as. That said, if I get up to this stage, it’s essentially no
great leap up to using a gen_server.
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CHAPTER 5

Evaluation

Computers let you make more mistakes
than any other invention in history.

With the possible exception of handguns
and tequila.

Anon

I am proud of the systems that I have produced while exploring a topic I'm
interested in, and I think I have done this research well.

In this project, first and foremost, I have learned about how Ipris works, at
both ends of the compiler — I'm now a lot more confident writing Ibr1s code
than I was when I started, and I'm also happy to build code generators for
other languages. I hope to improve some of the IDr1s code generation system
with changes that were out of scope of this project.

I've also spent a lot of time reading and thinking about concurrency models
and how they work, which I found enlightening. I'm particularly interested
in formal verification of Distributed Systems, but I felt I first needed to work
on a smaller set of concurrency problems as a precursor to that research. This
work has served well to get me starting to think about these sorts of problems
and how I can go about solving them.

Lastly, I've learned how to work my way through a large research project,
finding and solving interesting problems along the way. I'm sure if I did this
project again, I'd certainly do it a different way, but I feel that’s a lot of the
point.

5.1 THE VALUE oF MYy WORK

This work will become valuable to ERLANG programmers who are looking for
ways of developing verified concurrent systems. Whilst dialyzer is a great
tool, concurrent ERLANG programs really need a better set of verification tools
than its static analysis and QuickCheck.

This work could stand as the basis of a better type system for ERLANG
programs, but it would need a lot more work. I think the system deals with
type-safe actor systems well, and the typed assertions it gives are useful.
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However, it doesn’t deal with some of the really hard problems that ERLANG
programmers need to have solved, like tools to reason about distributed
programming or hot code swapping. On the other hand, dialyzer doesn’t
come close to helping with these either, and to verify this with QuickCheck
requires very complex tests.

I realise that a lot of the theory and details from my work are inscrutable
to many programmers, but I hope that these same checks will be built into an
ERLANG static analysis tool or DSL.

In terms of immediate impact, one of the most useful parts of this dis-
sertation is the documentation of how IDR1s’ code generation system works,
which will be useful to other people who are implementing (or thinking of
implementing) code generators. This work is the first to coherently codify
and explain how all the parts of that system work together, though there are
existing examples of other IDR1S code generators.

5.2 ExaMrLE PROGRAMS

Despite their brevity, my three example programs actually exercise a surpris-
ing amount of the code generator’s functionality, and therefore I'd claim they
were quite useful.

The test_primitives/MainErl.idr example I put together early on in
the project to test out coverage of a new set of interactive primitives I had
proposed. In the end, the changes to the FFI system meant I could reuse this
example to check and debug foreign calls, which is how most of EI0’s effectful
interactions are made.

This example also contains an equivalent C version in MainC. idr which
does exactly the same thing, proving I have got compilation correct. The C
code generator is the canonical backend, as it is used to create normal IDr1S
binaries if no other backend is specified.

The test_special_ctors/MainErl.idr example was also put together
very quickly to debug and check the special-cased constructors, but it now
serves to prove that these have been implemented correctly.

Lastly for the standalone examples, rpc_example/Main.idr contains a
simple concurrent example, which shows a process spawning a counter pro-
cess, then communicating with it over the RPC system I built. This shows
that both the Process 1 and the RPC systems I build work, which is great to
know, but also that it is possible to reason about this kind of system.

Then in the Gen*. idr files, each has an Example namespace with a single
example inside it. Respectively: the gen_server has an echo server (for any
type); the gen_fsm has an FSM that either replies with a number or a string
based on the state its in, which is changed with an asynchronous event; and
the gen_event just contains an event handler that counts how many events
it receives. I felt these examples were enough to be able to check if these
approaches were viable and would type check without too much bother, and
it seems this is the case.

Though in each of these cases I feel it’s clearest if the communication
language is specified separately to the handler implementations, which just
shows how useful defining the protocol up front is.
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5.3 WERE My OBJECTIVES MET?

I think I have managed to achieve most of my objectives, but I'll go through
each one.

Compiling Idris programs into Erlang

1. Formalise how IpR1s will compile into ERLANG. I have done this, the
formalisation is in Section 4.1.

2. Create an Ipris to ERLANG compiler backend. My IDris to ERLANG backend!
can produce working ERLANG programs from IDRIS code.

It is definitely research-quality software — it does everything it needs
to, but is not a high quality program. If I were going to be building
production ERLANG systems with IDR1s, I would rewrite this compiler
completely, of which the largest change would be to generate Core Erlang,
a desugared intermediate representation of ERLANG that most of the
other languages for the ERLANG VM compile into.

3. Document how to create new compiler backends for IDR1s. Section 3.1 is the
first viable piece of documentation for creating a new backend beyond
reading the code of existing backends. Together with the information in
Appendix C about the IDRr1s IRs, this document should be invaluable to
backend developers.

4. Create a small set of example IDR1s programs to demonstrate the new ERLANG
compiler backend. There are two sequential example programs that illus-
trate the ERLANG backend in examples in the idris-erlang repository,
both of which compile and run with my backend. They may seem
small, but they test the full range of type checking, foreign calls, and
constructor usage. I would have liked to create more, larger examples,
but I ran out of time to come back to these.

5. Devise a foreign call Interface for Ibris. There is now a foreign call interface
for Ipr1s, implemented by Brady, but based in part on discussions we
had about how it should work. This needs to be revisited in order to
support exporting more complex types for some backends, but it is
adequate for C and ErLANG. Unfortunately I didn’t manage to integrate
it into my compiler yet, which I would have liked to do.

Providing ways to verify the behaviour of Erlang programs

6. Create a small set of concurrent IDR1s example programs that can compile
into ERLANG. There is an example of my RPC example working in
the examples directory, which compiles and runs as a concurrent Er-
LANG program, based upon the 1ibs/erlang/Erlang/Process.idr and
libs/erlang/Erlang/RPC.idr. I would have liked to produce more
examples, but ran out of time to come back to this.

! Archibald Elliott. Idris-Erlang. Apr. 2015. URL: https://github.com/lenary/idris-erlang.
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7.

10.

Give a typed API to ERLANG and it’s runtime system. A dependently-typed
APl is, trivially, a typed APL See the next point.

. Give a dependently-typed API to ERLANG and its runtime system. 1 designed

a simple typed API (in 1ibs/erlang/Erlang/Process.idr) for concur-
rent message-passing in IDRr1s programs, which we know runs because
of the example. It uses dependent types to make sure we send the right
type of message to the right process.

In OTP/Genx*. idr there are dependently-typed versions of the three major
OTP behaviours. These use dependent-types to allow more flexibility in
how they communicate than they would be allowed with less powerful
statically-checked type system.

. Create a small set of dependently-typed concurrent IDR1s example programs

that can compile into ERLANG. The RPC example in examples uses the
dependently-typed system from Erlang/Process.idr, so this work is
an example that can compile into ERLANG.

Each file in 1ibs/erlang/0TP/Gen*.idr also contains an example of
that behaviour which type checks, but unfortunately none of them will
run on ERLANG yet.

For the GenFsm. idr system, I decided that the language would be para-
meterised by the current state of the gen_fsm when I communicated.
While I think this was an interesting idea, it seemed the dependent
types became increasingly overambitious, because there was no way the
calling process could know what state that FSM process was in at the
moment the FSM process started processing the call, meaning the caller
could never know for sure what thpe they would get back. A simpler
system, where each synchronous event only has one reply type, like a
gen_server seems sensible.

Devise a Hoare-like logic for ERLANG and its runtime system. In the end I
didn’t even begin to work on this objective, as it turned out to require a
lot more prior knowledge than I was expecting, and I felt that it wouldn’t
be as useful as putting my time into other parts of the project. I hope to
revisit this sometime in the future to devise a firmer basis for reasoning
about ERLANG programs.

Modelling concurrency calculi in Idris

11.

12.

Model a concurrency calculus in IDpR1s. There is a typed interface to the
Actor model in 1ibs/erlang/Erlang/Process.idr that I can not only
use during type checking, but can also execute, I think I've gone further
than just modelling a concurrency calculus.

Create a verified and executable concurrency library for IDr1s based on ERLANG
and the Actor model. I have implemented this in Process. idr, which is
both typed and executable. While it doesn’t offer particularly strong
guarantees, I feel it does satisfy this objective.
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13. Create a verified and executable concurrency library for IDr1s based on another
concurrency calculus. 1 did not manage to do any work towards this
objective.

5.4 WHAT DIDN'T I MANAGE?

There are two advanced objectives that I was unable to complete in the time
available.

Firstly, I'd have loved to devise a Hoare-like logic for reasoning about the
ErLANG language and system in particular. I think this would not only have
been interesting to devise, but also really useful for other researchers working
on static or dynamic analysis of ERLANG programs.

Secondly, I would have loved to have more time to study other concurrency
calculi, with a view to implementing one of them, in a well-typed way, on
top of ERLANG. In the end, it was a lot of work just to devise how to model
the actor model well, which is why I didn’t manage to start on a second
concurrency calculus.

I would also have liked to produce a lot more example programs to show
exactly what was possible with the system I have designed and built. The
existing examples are not enough to really show off the project.
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CHAPTER 6

Conclusion

In theory, there is no difference between
theory and practice, but in practice I'm the
wrong person to ask.

@AcademicsSay

I have shown that IDR1s is an entirely adequate programming language for
concurrent programming. With the new ERLANG code generation system that
I have built, we can now write and run safe, flexible actor-based programs
which conform to statically proven guarantees.

I have built an IpRr1s to ERLANG compiler, which supports concurrent IDr1s
code. Along the way I have documented exactly how to produce a compiler
and how my compiler works.

I have also devised a way to model the Actor model in Ipris” dependent
types in a lightweight way such that we can run the resultant concurrent
programs on ERLANG, including doing inter-process RPC.

I looked into a heavily dependently-typed model of the three main Er-
LANG/OTP behaviours, which I finished, but are not executable.

I wanted to look into modelling other concurrency calculi in Ibr1s, but
was unable to do so, and likewise I was unable to devise a Hoare-like logic
for ERLANG and its runtime system.

I hope that the work in my dissertation paves the way for future research
into concurrent programming with IDRr1s and other dependently-typed pro-
gramming languages.

6.1 WHAT's NEXT?

This project leads into a few further projects, which I would like to think
about.

First and foremost, I'm interested in Distributed Systems. Concurrency
is required for distribution, but there are a lot of ways in which distributed
systems are much harder to verify, all to do with how they fail and how
information propagates around distributed systems. I see this work with Ipr1s
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as a stepping stone to do research around using type systems (or other static
analysis) to verify distributed systems.

However, this is not the only direction this work leads in. There is lots of
work that could still be done about writing IDRIS programs to run on ERLANG.

The first thing should be to complete the behaviours in 0TP/Gen*.idr
such that they can run on ERLANG. The compiler also needs polishing such
that ERLANG programs can call into functions generated from IDRr1s using the
foreign exports I designed.

I also wondered about integrating this work on processes into Ibr1s” Effects
library, essentially having two different kinds of Effects: the ability to send
messages to a particular single Process; and the ability to spawn new processes
that use a given language. This would then allow the programmer to much
more tightly control the side-effects of their functions.

This should be able to be extended into the OTP behaviours in the same
way, with separate effects for communicating with a particular gen_server
(for example), and for spawning new instances of a gen_server. Perhaps it
would be possible to restrict the effects even further to only being able to
make a singular particular call or cast to a particular gen_server. The same
applies for the other OTP behaviours.

One final place I might have taken this project was to see whether we
could design a system for protocols from the ground up. Le. define processes
with typed message-passing-interfaces, and then composing these definitions
together such that subsets of the sends and receives match together, somewhat
like the approach in CCS, but I'm not totally sure of the viability of creating
correct protocols like this. Protocols almost certainly do need to be defined
starting from the interactions and proceeding down to the parties, rather than
starting from the parties and building up to the interactions.

As you can see, this project is the stepping stone to a lot of interesting
research.
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APPENDIX A

Listings

The code that I developed or used as part of this project is hosted on GitHub,
in the following repositories:

* The IDRIs to ERLANG compiler and libraries that I developed is in a
repository at https://github.com/lenary/idris-erlang. This repos-
itory includes some examples as well.

* The IDRIS repository is at https: //github. com/idris-lang/Idris-dev.
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APPENDIX C

The IDRIS Language

C.1 INTERMEDIATE REPRESENTATION BNFs

The IDr1s intermediate representation (IR) is defined in src/Idris/Lang.hs,
and below we include a representation of this language and its variants in
Bakus-Naur Form. The form has been very slightly simplified for clarity.

Declarations are essentially all the same, whether they are an LDecl, a
DDecl, or an SDecl, what changes is the structure of the (expression).

Figure C.2 is the structure of LExp, the highest-order of the expression
representations.

(declaration)

(expression)

== function (name) [(name)*] (expression)

constructor,, (name)

Figure C.1: LDecl, DDecl, and SDecl

(variable)

(expression) ( (expression)* )

lazy (name) ( (expression)*)

lazy (expression)

force (expression)

let (name) := (expression) in (expression)
lambda (name)* — (expression)

[ (expression) 1,

new (name) ( (expression)* )

case (expression) of (alternative)* end
(constant)

foreign (fdesc) (fdesc) ( (farg)* )
operator (operator) ( {expression)*)
nothing

error (string)

Figure C.2: LExp from src/IRTS/Lang.hs
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-LV

- LApp

- LLazyApp
- LLazy

— LForce

— LLet

— LLam

— LProj
—LCon

— LCase

— LConst

— LForeign
-LOp

— LNothing
— LError



(expression) = (variable) -DV

| (name) ( (expression)*) - DApp
| let (name) = (expression) in (expression) —DLet
| update (name) := (expression) - DUpdate
| [ (expression) ], - DProj
| new (name) ( (expression)* ) -DC
| case (expression) of (alternative)* end - DCase
| chkcase (expression) of (alternative)* end — DChkCase
| (constant) — DConst
| foreign (fdesc) (fdesc) ( (farg)*) — DForeign
| operator (operator) ( (expression)*) -DOp
| nothing — DNothing
| error (string) — DError

Figure C.3: DExp from src/IRTS/Defunctionalise.hs

(expression) = (variable) -8V
| (expression) ( (variable)* ) - SApp
| let (variable) := (expression) in {(expression) — SLet
| update (variable) := (expression) - SUpdate
| [ (variable) 1, — SProj
| new (name) ( (variable)* ) - SCon
| case (variable) of (alternative)* end — SCase
| chkcase (variable) of (alternative)* end — SChkCase
| (constant) - SConst
| foreign (fdesc) (fdesc) ( (foar)*) — SForeign
| operator (operator) ( (variable)* ) - SOp
| nothing — SNothing
| error (string) — SError

Figure C.4: SExp from src/IRTS/Simplified.hs

The structure of DExp in Figure C.3 is much the same, only without the
explicit laziness or lambdas. It introduces an ‘update’ structure, to replace
them. It also introduces a ‘chkcase’ structure which works like a ‘case’
structure, only the type it returns is unknown at compile time.

The structure of SExp (from src/IRTS/Simplified.hs) is further modified
to be in applicative-normal form. In this case, all functions are applied to
variables (rather than expressions).

Other parts of the grammar are in Figure C.5, and are common to all
(expression) forms.
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(alternative) = match (name) ( (name)*) — (expression)
| (constant) — (expression)
| default — (expression)

(variable) == local (integer)
| global (name)

(name) = user (string)
| namespace (name) ( (string)*)
| machine (integer) (name)

(constant) == int (integer)
| bigint (integer)
| float (float)
| char (char)
| string (string)

| arithtype (arithty)

|

|

|

|

I

stringtype
worldtype
world
voidtype
forgot
(arithty) == int (intty) | float
(intty) == fixed (nativety) | native | big | char
(nativety) n= it8 | itl6 | it32 | it64
(fdesc) = constructor (name)
| string (string)
| unknown
| io (fdesc)
| apply (name) ( (fdesc)*)
(farg) == arg (fdesc) (expression)
(foar) == var (fdesc) (variable)
(interface) u= export (name) (string) ( (export)*)
(export) == data (string)

| fun (name) (fdesc) (fdesc) ( (fdesc)* )

Figure C.5: The Rest of the Idris Intermediate Representation. (operator) is
defined in Figure C.6.
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(operator) u= + (arithty) | — (arithty) | x (arithty) | udiv (arithty)
| sdiv (arithty) | urem (arithty) | srem (arithty)
| and (intty) | or (intty) | xor (intty) | complement (intty)
| shiftl (intty) | Ishiftr (intty) | ashiftr (intty)
| eq (arithty) | 1t (intty) | lte (intty) | gt (intty)
| gte (intty)
| slt (arithty) | slte (arithty) | sgt (arithty) | sgte (arithty)
| signextend (intty) (intty) | zeroextend (intty) (intty)
| truncate (intty) (intty)
| int-float (intty) | float-int (intty)
| int-str (intty) | str-int (intty)
| float-str | str-float | ch-int (intty) | int-ch (intty)
| bitcast (arithty) (arithty)
| exp | log | sin | cos | tan | asin | acos | atan | sqrt
| floor | ceil | negate

| strconcat | strlt | streq | strlen | strhead | strtail

| strcons | strindex | strrev | readstr | writestr

| systeminfo | fork | par | noop

| external (name)

(rts-bool) =1 — True
0 — False

Figure C.6: Idris Primitive Operators, from src/IRTS/Lang.hs

C.2 PRIMITIVES

Until this document, there has been no central documentation of all of the
idris primitives, including their expected functionality and types. I won't
claim this listing is canonical, but I hope it at least helps someone out.

In the following list, each operator is being given with a Haskell-like
type signature, for clarity. The expected types of any external primitives
will be declared in the code. The existing external primitives are declared in
libs/prelude/Builtins.idr.

o +(arithty) :: (arithty) — (arithty) — (arithty) — Arithmetic addition.
o —(arithty) :: (arithty) — (arithty) — (arithty) — Arithmetic subtraction.

o X (arithty) :: (arithty) — (arithty) — (arithty) — Arithmetic multiplica-
tion.

e udiv(arithty) :: (arithty) — (arithty) — (arithty) — Unsigned arithmetic
division.

e sdiv(arithty) :: (arithty) — (arithty) — (arithty) — Signed arithmetic
division.

o urem(arithty) :: (arithty) — (arithty) — (arithty) — Unsigned arithmetic
remainder.
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srem(arithty) :: (arithty) — (arithty) — (arithty) — Signed arithmetic
remainder.

and (intty) :: (intty) — (intty) — (intty) — Bitwise logical AND.
or(intty) :: (intty) — (intty) — (intty) — Bitwise logical OR.

xor(intty) :: (intty) — (intty) — (intty) — Bitwise logical XOR (aka
exclusive or).

complement :: (intty) — (intty) — Bitwise logical negation.
shiftl(intty) :: (intty) — (intty) — (intty) — Left bitshift.

Ishiftr (intty) :: (intty) — (intty) — (intty) — Right logical bitshift.
ashiftr(intty) :: (intty) — (intty) — (intty) — Right arithmetic bitshift.
eq(intty) :: (arithty) — (arithty) — (rts-bool) — Arithmetic equality.
It(intty) = (intty) — (intty) — (rts-bool) — Arithmetic less-than.

lte(intty) == (intty) — (intty) — (rts-bool) — Arithmetic less-than-or-
equal-to.

gt(arithty) :: (intty) — (intty) — (rts-bool) — Arithmetic greater-than.

gte(arithty) :: (intty) — (intty) — (rts-bool) — Arithmetic greater-than-
or-equal-to.

slt(arithty) :: (arithty) — (arithty) — (rts-bool) — Arithmetic signed
less-than.

slte(arithty) :: (arithty) — (arithty) — (rts-bool) — Arithmetic signed
less-than-or-equal-to.

sgt(arithty) :: (arithty) — (arithty) — (rts-bool) — Arithmetic signed
greater-than.

sgte(arithty) :: (arithty) — (arithty) — (rts-bool) — Arithmetic signed
greater-than-or-equal-to.

signextend (intty) (intty) :: (intty) — (intty) — Sign extend from the first
integral type to the second one. The first integral type should be smaller
than the second one.

zeroextend (intty) (intty) :: (intty) — (intty) — Zero extend from the
first integral type to the second one. The first integral type should be
smaller than the second one.

truncate(intty) (intty) == (intty) — (intty) — Truncate from the first
integral type to the second one. The first integral type should be larger
than the second one.
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int — float(intty) :: (intty) — (float) — Cast from a particular integral
type into a floating-point number.

float — int(intty) :: (intty) — (float) — Cast from a floating-point num-
ber into a particular integral type.

int — str(intty) = (intty) — (string) — Cast from a particular integral
type into a string.

str — int(intty) :: (string) — (intty) — Cast from a string into a particular
integral type.

float — str :: (float) — (string) — Cast from a floating-point number into
a string.

str — float :: (string) — (float) — Cast from a string into a floating-point
number.

ch — int(intty) :: (character) — (intty) — Cast from a character into a
particular integral type.

int — ch(intty) :: (intty) — (character) — Cast from a particular integral
type into a character.

bitcast(intty) (intty) :: (intty) — (intty) — Cast from one integral type
to another. Right now IDR1s doesn’t actually ever generate this primitive,
which means information about lacking, but that may change in the
future.

exp :: (float) — (float) — The Natural Exponential function on floating-
point numbers

log :: (float) — (float) — The Natural Logarithm function on floating-
point numbers.

sin :: (float) — (float) — The Sine function on floating-point numbers.
cos :: (float) — (float) — The Cosine function on floating-point numbers.

tan :: (float) — (float) — The Tangent function on floating-point num-
bers.

asin :: (float) — (float) — The Arcsine function on floating-point num-
bers.

acos :: (float) — (float) — The Arccosine function on floating-point
numbers.

atan :: (float) — (float) — The Arctangent function on floating-point
numbers.

sqrt :: (float) — (float) — The Square-root function on floating-point
numbers.
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floor :: (float) — (float) — The Floor function on floating-point numbers.
ceil :: (float) — (float) — The Ceiling function on floating-point numbers.

negate :: (float) — (float) — The Negate function on floating-point
numbers.

strconcat :: (string) — (string) — (string) — String concatenation.
strlt :: (string) — (string) — (rts-bool) — String comparison (less-than).
streq :: (string) — (string) — (rts-bool) — String equality.

strlen :: (string) — (intty) — String length. The returned length should
be of the native integral type.

strhead :: (string) — (character) — Return the first character of a string.

strtail :: (string) — (string) — Return a copy of the string without the
first character.

strcons :: (character) — (string) — (string) — String Construction. Cre-
ate a new string by prepending the given character to the start of the
given string. This can be more inefficient than strconcat, as the IDR1s
compiler will try to use that operator in as many places as possible.

strindex :: (string) — (intty) — (character) — Return the character at
the given index in the string. The index will be in the native integer

type.

strrev :: (string) — (string) — Return a copy of the string where the
original string is reversed.

readstr :: (world) — (string) — Read the first line of stdin and return it
as a string. The (world) argument is so that IDrR1s doesn’t compile out
this primitive because it thinks it is pure, and can be ignored.

writestr :: (world) — (string) — (rts-bool) — Write the given string
to stdout (without a newline), and return whether the operation was
successful or not. Again, the (world) can be ignored.

systeminfo :: (intty) — (string) — Generate a function that returns
information about the system as a string. This will either be called
with a native integer of either 0, 1 or 2. If the argument is 0, return
a string representing the name of the backend. If the argument is 1,
return a string representing the OS the program was compiled on. If the
argument is 2, return a string representing the architecture target triple
that the program was compiled on.

fork :: I0a — (pointer) — Fork a new concurrent process to evaluate
the given expression, returning a pointer to that process via which the
process can be messaged with. The expression may have side effects, as
it is an I0 function.
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* par :: a — a — Evaluate the argument in a parallel thread, returning
the result. This doesn’t even need to actually be done in parallel if the
backend is implicitly single-threaded, as long as it returns the result of
the computation.

* noop :: a — a — Returns its argument. Not currently generated by the
compiler.

e external(name) — The type of these primitives is declared within IDr1s
source code itself. Some examples are in 1ibs/prelude/Builtins.idr.
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